Algebra and Logarithms

Calculations

100	100	100	100	100
200	200	200	200	200
300	300	300	300	300
400	400	400	400	400

\square Player A \square

Graphs
Stupid uestions
History
Properties

Calculations for 100.

$$
\log _{2} 8=?
$$

a	8
b	16
c	4
d	3
e	2

Calculations for 200.

$$
\begin{array}{ll}
\log _{3} \frac{1}{27}=? \\
\text { a } & 3 \\
\text { b } & 9 \\
\hline \text { c } & 1 / 9 \\
\hline \text { d } & -3 \\
\hline \text { e } & 1 / 3
\end{array}
$$

Calculations for 300.

$$
\begin{aligned}
& \log _{10} \frac{1}{1000000}=? \\
& \begin{array}{ll}
\mathrm{a} & 10 \\
\mathrm{~b} & 1 / 1000 \\
\mathrm{c} & 7 \\
\mathrm{~d} & -6 \\
\mathrm{e} & -10
\end{array}
\end{aligned}
$$

Calculations for 400.

$\log _{4} 4096=?$

a	4
b	5
c	6
d	7
e	8

History for 100.

How the logarithms were stored in the past?
a As graphs
b As mementos
c As slide rules
d As tables
As letters

History for 200.
The number e is named for
a Newton
b Pythagoras
c Efficiency
d Euler

History for 300.

Who discovered logarithms?

a	Euler
yb	Briggs
c	Obama
d	Napier
e	Gauss

History for 400.
Logarithms were discovered in what century?

Properties for 100.

Which property is used to multiply large numbers fast?
a Base change
b Reduction of exponent to multiplication
c Changing multiplication to addition
d Cancelation of powers
e Use of complex numbers

Properties for 200.
Base change formula

$$
\begin{array}{ll|}
\mathrm{a} & \log _{a} x=\frac{\log _{x} a}{\log _{c} a} \\
\mathrm{~b} & \log _{a} x=\frac{\log _{a} x}{\log _{c} a} \\
\mathrm{c} & \log _{a} x=\frac{\log _{c} x}{\log _{c} a} \\
\mathrm{~d} & \log _{a} x=\frac{\log _{c} a}{\log _{c} x} \\
\mathrm{e} & \log _{a} x=\frac{\frac{\Omega}{a}}{\log _{c} x} \\
\hline
\end{array}
$$

Properties for 300.

What property of logarithms is used in this equation,

$$
\log _{2} 2 x=\log _{2} x+1
$$

a Addition of real numbers
b Base change
c Reduction of exponent to multiplication
d Changing multiplication to addition
e Cancelation of powers

Properties for 400.

What property of logarithms is NOT used in

$$
\log _{4} x y^{t}=\frac{1}{2}\left(\log _{2} x+t \log _{2} y\right)
$$

a Reduction of exponent to multiplication
b Changing multiplication to addition
c $\quad \log _{a} a^{n}=n$
d Base change
e Factoring out coefficients

Stupid questions for 100.

$$
\log _{a} a=?
$$

a	a
b	0
c	1
d	2
e	none of the above

Stupid questions for 200.

$$
\log _{121} 121^{5}=?
$$

a	11
yb	121
b	12
cc	1
d	5
y	$1 / 5$

Stupid questions for 300.

Let $a>0$. When a^{x} makes sense?
a Always
b Only for $x>0$
c Only for $x<0$
d Only for integer x
e Only when x is a fraction

Stupid questions for 400.

Let $a<0$. When a^{x} makes sense?

a Always
b Only for $x>0$
c Only for $x<0$
d Only for integer x
e None of the above

Graphs for 100.

The graph of $y=2^{x}$ has the following property:
a Has a shape of a parabola
b Has a shape of hyperbola
c Is decreasing
d Is increasing
e Passes through point $(0,0)$

Graphs for 200.

The graph of $y=\log _{3} x$ has the following property:
a Has a shape of a parabola
c Is decreasing
d Is increasing
e Passes through point $(0,0)$

b Has a shape of hyperbola

Graphs for 300.

Graphs $y=\log _{a} x$ are increasing when:

a Always

b When $a>0$
c When $a<0$
d Only when $a>1$
e Only when $x>1$

Graphs for 400.

All graphs $y=\log _{a} x$ always pass through:
a Points $(0,0)$ and $(1,1)$
b Points $(a, 0)$ and $(1, a)$
c Points $(1,0)$ and $(a, 1)$
d Points $(0,1)$ and $(a, 1)$
e None of the above

