Factoring Polynomials Review

 $\begin{array}{cccc} \mathsf{Greatest} & \mathsf{Leading} & \mathsf{Leading} & \mathsf{Potpourri} & \mathsf{Stupid} \\ \mathsf{Common} \ \mathsf{Factor} \ \ \mathsf{Coefficient} \! = \! 1 & \mathsf{coefficient} \not = 1 & \mathsf{Questions} \end{array}$

GameBoard

Full Screen

Greatest Common Factor for 100.

Factor 2x - 10 completely

$$2(x-10)$$

$$2(x-5)$$

$$2x - 10$$

none of the above

GameBoard

Full Screen

Greatest Common Factor for 200.

Factor $15a^2b - 10ab^2$ completely

$$5(3a^2b - 2ab^2)$$

$$5ab(3a-2b)$$

$$5ab(3ab - 2ab)$$

$$15a^2b - 10ab^2$$

none of the above

GameBoard

Full Screen

Greatest Common Factor for 300.

Factor $10m^3n^3 - 2mn^2 + 14mn$ completely

$$10m^3n^3 - 2mn^2 + 14mn$$

$$2(5m^3n^3 - 2mn^2 + 14mn)$$

$$2mn(5m^3n^3 - 2mn^2 + 14mn)$$

$$2mn(5m^2n^2 - 2n^2 + 7)$$

none of the above

GameBoard

Full Screen

Greatest Common Factor for 400.

Factor $4a^2b^2 + 16ab + 12a$ completely

$$4a(ab^2 + 4b + 3)$$

$$4ab(ab+4+3b)$$

$$2ab(2ab + 8 + 6b)$$

$$4a^2b^2 + 16ab + 12a$$

none of the above

GameBoard

Full Screen

${\sf Leading\ Coefficient}{=}1\ {\sf for\ 100}.$

$$(x+2)(x+5)$$

$$(x-2)(x-5)$$

$$(x+3)(x+4)$$

$$(x-3)(x-4)$$

none of the above

Leading Coefficient=1 for 200.

$$(w-2)(w-3)$$

$$(w+2)(w-3)$$

$$(w+2)(w+3)$$

$$(w-2)(w+3)$$

none of the above

${\sf Leading\ Coefficient}{=}1\ {\sf for\ 300}.$

$$(z+13)(z+14)$$

$$(z-13)(z-14)$$

$$(z-13)(z+14)$$

$$(z+13)(z-14)$$

 $none\ of\ the\ above$

Full Screen

${\sf Leading\ Coefficient}{=}1\ {\sf for\ 400}.$

Factor $-4 - 3m + m^2$

$$(m+4)(m+1)$$

$$(m-1)(m-4)$$

$$(-4+m)(1+m)$$

$$(-4+m)(1-m)$$

none of the above

Full Screen

Leading coefficient $\neq 1$ for 100.

$$(x+1)(x+4)$$

$$(x+2)(2x+1)$$

$$(x+1)(2x+2)$$

$$(x+1)(x+2)$$

none of the above

GameBoard

Full Screen

Leading coefficient $\neq 1$ for 200.

Factor $2x^2 - 11x + 15$

$$(2x-5)(x-3)$$

$$(2x+5)(x+3)$$

$$(2x-3)(x-5)$$

$$(2x+3)(x+5)$$

none of the above

GameBoard

Full Screen

Leading coefficient $\neq 1$ for 300.

Factor
$$15n^2 - n - 28$$

$$(3n-4)(5n-7)$$

$$(3n+4)(5n+7)$$

$$(3n-4)(5n+7)$$

$$(3n+4)(5n-7)$$

none of the above

GameBoard

Full Screen

Leading coefficient $\neq 1$ for 400.

Factor $12q^2 + 34q - 28$

$$2(2x+7)(3x-2)$$

$$(4x-7)(3x+4)$$

$$(2x-7)(6x+4)$$

$$(x-4)(12x+7)$$

none of the above

GameBoard

Full Screen

Full Screen

Potpourri for 100.

Factor $3p^2 - 147$ completely

$$3(p^2 - 49)$$

$$3(p-7)^2$$

$$3(p-7)(p+7)$$

$$3(p+7)^2$$

none of the above

Potpourri for 200.

Factor $6t^3 - 14t^2 - 12t$ completely

$$2t(t+3)(3t+2)$$

$$2t(t-2)(3t+3)$$

$$2t(t-2)(3t-3)$$

$$2t(t-3)(3t+2)$$

none of the above

ra achers Proiec

GameBoard

Full Screen

GameBoard Full Screen

Quit

Potpourri for 300.

Factor $16c^2 + 72cd + 81d^2$

 $(4c + 9d)^2$

(2c+3d)(8c+27d)

(4c+3)(4c+27d)

(2c + 27d)(8c + 3d)

none of the above

Potpourri for 400.

$$(w-3)(w-15)$$

$$(w^2-3)(w^2-15)$$

$$(w+3)(w-15)$$

$$(w^2+3)(w^2-15)$$

None of the above

GameBoard

Full Screen

 $\ln x^2 + 3x + 2 = (x+1)(x+2), \quad (x+1) \text{ and } (x+2)$ are called

groups

products

factors

pairs

none of the above

Algebra Cl-Teachers Project

GameBoard

Full Screen

 $x^2 + 81$ is factorable.

Yes, it's
$$(x+9)(x+9)$$

Yes, because it's sum of two squares

No, difference of two squares can be factored, but not sum of two squares.

No. A difference of squares is factorable but not a sum.

none of the above

Algebra CI-Tead

GameBoard

Full Screen

Stupid Questions for 300.

$x^2 + 8x + 15$ can be solved

Of course! $\overline{x^2 + 8x + 15}$ can be factored, so there are solutions.

Of course! Because I can guess and check for the value of x.

No! It is not factorable

No! It is an expression, and not an equation.

none of the above

GameBoard

Full Screen

Factoring is the only way to solve quadratic equations

Yes. How else can you solve for the variable?

Yes. If you can't factor, then there are no solutions.

No. There are other ways such as using the quadratic formula.

No. You can always guess and check.

None of the above

GameBoard

Full Screen