

Sequences, Metrics and Topology

Definitions for 100.

In a topological space $\{p_n\}$ converges to a point p iff

 $\begin{array}{lll} \exists O \in \tau & O \ni p \ \ \forall N \in \mathbb{N} \ \ \forall n \geq N \ \ p_n \in O \\ \exists O \in \tau & O \ni p_n \ \ \exists N \in \mathbb{I} \ \ \forall n \geq N \ \ p \in O \\ \forall O \in \tau & O \ni p_n \ \ \exists N \in \mathbb{N} \ \ \forall n \geq N \ \ p \in O \\ \forall O \in \tau & O \ni p \ \ \exists N \in \mathbb{N} \ \ \forall n \geq N \ \ p \in O \\ \forall T > 0 \ \ \exists N \in \mathbb{N} \ \ \forall n \geq N \ \ d(p_n, p) < r \\ \mbox{none of them} \end{array}$

Definitions for 200.

In a metric space, the sequence $\{p_n\}$ converges to a point p iff

 $\begin{array}{ll} \forall O \in \tau \quad O \ni p \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad p_n \in O \\ \exists r > 0 \ \exists N \in \mathbb{N} \quad \forall n < N \quad d(p_n, p) < r \\ \exists r > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad d(p_n, p) > r \\ \forall r > 0 \quad \exists N \in \mathbb{N} \quad \forall n < N \quad d(p_n, p) > r \\ \exists r > 0 \quad \forall N \in \mathbb{N} \quad \exists n < N \quad d(p_n, p) > r \\ \forall r > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad d(p_n, p) > r \\ \forall r > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad d(p_n, p) < r \end{array}$

Definitions for 300.

We say that $\{p_{n_i}\}_i$ is a **subsequence** of $\{p_n\}_n$ if

 $\begin{array}{l} n_1 > n_2 > n_3 > \cdots \\ n_1 \leq n_2 \leq n_3 \leq \cdots \\ p_{n_1} < p_{n_2} < p_{n_3} < \cdots \\ p_1 < p_1 < p_3 < \cdots \\ p_{n_1} > p_{n_2} > p_{n_3} > \cdots \\ p_1 > p_1 > p_3 > \cdots \\ n_1 < n_2 < n_3 < \cdots \\ n_0 = of them \end{array}$

Quit

Definitions for 400.

We say that $\{p_n\}$ is a **Cauchy sequence** if

 $\begin{array}{l} \forall r > \overline{0}, \exists N \in \mathbb{N}, \exists n, m \geq N, d(p_n, p_m) < r \\ \forall r > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, d(p_n, p_m) < r \\ \exists r > 0, \exists N \in \mathbb{N}, \exists n, m \geq N, d(p_n, p_m) < r \\ \exists r > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, d(p_n, p_m) < r \\ \forall r > 0, \forall N \in \mathbb{N}, \exists n, m \geq N, d(p_n, p_m) < r \\ \forall r > 0, \forall N \in \mathbb{N}, \exists n, m \geq N, d(p_n, p_m) < r \end{array}$ none of them

Home Page GameBoard Full Screen Ouit

Examples for 100.

In
$$R$$
 usual top, $p_n = \frac{1}{n}$ converges to
 $3^0 - \frac{1+2+3}{3^2-3^1}$
1
Doesn't converge, 0 is not in our universe
2

 ∞

none of them

<mark>Math351</mark> RealAnalysis

lath3 ealAi

Examples for 200.

 $X = (0,\infty),$ usual topology $p_n = \frac{1}{n}$ converges to

0 .5 1 2 ∞ none of them

Examples for 300.

In R with $\tau = \{ {\rm all \ sets} \},$ the sequence $\frac{1}{n}$ converges to

0 .5 1 2 ∞ none of them

In R with $\tau = \{ \emptyset, \mathbb{R} \} \;$ the sequence $\frac{1}{n}$ converges to

0 .5 1 2 ∞ All real numbers none of them

Theorems for 100.

If p_n is Cauchy, find the incorrect answer

- p_n is for sure bounded.
- p_n it might not converge.
- $\ensuremath{p_n}$ converges provided it has a convergent subseq.
- p_n converges if it lives in a compact set.
- p_n converges if it lives in \mathbb{R}^k .
- p_n might jump b&f between two values

Theorems for 200.

If $p_n \to p$, then

Any subsequence of p_n converges to pThere is one subsequence of p_n that diverges Only one subsequence of p_n converges to pNo subsequence of p_n converges to pnone of them

Home Page GameBoard Full Screen Quit

Theorems for 300.

If $p_n \to p$, then

 p_n has a divergent Cauchy subsequence p_n is Cauchy and it might not converge to p p_n diverges p_n is Cauchy p_n converges to 0 p_n converges for sure to 34.75 none of them

Theorems for 400.

If p_n converges to p, find the incorrect answer

 p_n might converge to q where $q \neq p$. p_n might converge to all points p_n has a subsequence that converges p_n might diverge sometimes p_n is a Cauchy sequence always none of them

<mark>vlath351</mark> RealAnalysis

Counter Examples for 100.

A set open and closed in $\ensuremath{\mathbb{R}}$ usual topology

 $\{0, 1, 5\}$ \emptyset \mathbb{Q} \mathbb{I} 0,1(0,1]

Math351 RealAnalysis

Counter Examples for 200.

A sequence that converges to 500 different points

$$p_n = 1/n$$
, \mathbb{R} usual top
 $p_n = 1 - \frac{1}{n}$, \mathbb{R} Sorgenfrey top
 $p_n = (-1)^n$, \mathbb{R} discrete top
 $p_n = n^2$, \mathbb{R} indiscrete top
 $p_n = 0$, \mathbb{R} Sierpinksi top
none of them

Vlath351 RealAnalysis

Counter Examples for 300.

In this metric, balls are ONLY singletons

Taxi-Cab Driver metric Usual metric metric d(x, y) = 0. Network metric discrete metric none of them

<mark>Math351</mark> RealAnalysis

Counter Examples for 400.

Which one is not true about rationals, (usual topology)?

- ${\mathbb Q}$ is Countable
- ${\mathbb Q}$ is dense in the irrationals
- ${\mathbb Q}$ has the same cardinality as ${\mathbb N}.$
- $\ensuremath{\mathbb{Q}}$ is not closed
- ${\mathbb Q}$ is not open
- ${\mathbb Q}$ is not bounded
- The interior of $\ensuremath{\mathbb{Q}}$ is empty
- The closure of $\ensuremath{\mathbb{Q}}$ contains the irrationals
- ${\mathbb Q}$ is both open and closed

vlatn351 RealAnalysis

Compute for 100.

In ${\mathbb R}$ with the usual topology compute

 $\overline{\mathbb{Q}} =$

Example : integers

dath351 RealAnalysi:

Compute for 200.

In ${\mathbb R}$ with the usual topology compute

$$(\{0, 1, 2, 3\})^O =$$

Example : universe

Math351 RealAnalys

Compute for 300.

In ${\mathbb R}$ with the usual topology compute

$$\Bigl((0,1) \cup \{5,6,7\}\Bigr)^O =$$

Example : [1,10)

<mark>Vlath351</mark> RealAnalysis

Compute for 400.

In ${\mathbb R}$ with the usual topology compute

```
\overline{(0,1)\cup(1,5)\cup(5,6)} =
```

Example : (-2,3)

<mark>/lath351</mark> 8ealAnalysi

Top and Compc for 100.

In \mathbb{R}^k with usual topology, what describes better Heine Borel Theorem?

Every set is bounded and closed Compact implies bounded and closed closed and bounded implies compact compact iff closed and bounded compact implies closed but not bounded compact implies closed none of them

<mark>Vlath351</mark> RealAnalysis

Top and Compc for 200.

A set \boldsymbol{A} is closed iff

 $\begin{array}{l} A' \notin \tau \\ A \in \tau' \\ A \text{ is not open} \\ A \text{ is open} \\ \text{none of them} \end{array}$

Vlath351 RealAnalysis

Top and Compc for 300.

 $\{3, 15\}$ is

two dots an interval an infinite set the numbers between 3 and 15 excluding both the numbers between 3 and 15 including both the numbers between 3 and 15 including only 3 my lover

Home Page GameBoard Full Screen Quit Top and Compc for 400.

In $\mathbb R$ usual topology, the set (0,5]

is empty is closed but not open is open and closed is not closed but it is open none of them

Vlath351 RealAnalysis

